Search results

Search for "finite element analysis" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • maximise the X-component of the LIA signal. SJEM measurements were performed for current densities of 45, 48.2, 51.8, 54, and 58 mA/μm2, the results of which can be found below. Simulations Finite element analysis simulations using COMSOL Multiphysics 6.0 were employed to cross-verify the results obtained
PDF
Album
Full Research Paper
Published 16 Jan 2023

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • and manufactured to address current limitations for mimicking skin in vivo conditions. Finite element analysis (FEA) was developed to simulate single MN insertion into a multilayered skin model and validated experimentally using a commercial Pen Needle as a model for the thermoplastic MNs. Margins of
PDF
Album
Full Research Paper
Published 08 Jul 2022

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • neural network treatment was compared to finite element analysis and a simple estimation of the sampled volume using blind reconstruction. Finite element analysis gave a significantly better result than the NN but was very slow. The NN was much faster, but did not perform significantly better than the
PDF
Album
Review
Published 13 Aug 2021

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • the calibration sample. These requirements have prompted several alternative theoretical approaches [17][18][19], in some cases based on finite element analysis [13][20][21], as well as modifications of the measurement procedure [22]. In addition to the aforementioned critical points in quantitative
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • bending-induced piezoelectric model was constructed, and the calculated stress and potential distribution were obtained through finite element analysis, as shown in Figure 1c and Figure 1d. Figure 1c shows the stress distribution under bending. It can be clearly found that the stress is mainly
PDF
Album
Full Research Paper
Published 02 Nov 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • algorithm, the best results were obtained for a cantilever with the following dimensions: L = 460 µm, a = 58 µm, b = 1.8 µm. In Table 1, the free resonance frequencies for the fitted experimental cantilever are compared to the experimental ones and to those obtained by using finite element analysis (FEA
PDF
Album
Full Research Paper
Published 04 May 2020

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • the cantilever and the contact mechanics between the tip and the multilayer sample. Finite element analysis (FEA) was also carried out for comparison. Some qualitative clues were obtained for optimizing the imaging contrast, which were experimentally proved. Finally, imaging of structural defects in
  • tip to a blunt conical tip does not lead to large deviations in stiffness contrast evaluation, especially under a large indentation depth. Finite element analysis The FEA method was additionally used to simulate the contact between the tip and the multilayer flexible circuit. The structural model was
PDF
Album
Full Research Paper
Published 07 Aug 2019

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • modelling. A simple 3D model based on finite element analysis was implemented in Comsol Multiphysics software in order to investigate the optical response of single and ordered arrays of different gold nanostructures under the excitation of a uniform p-polarized electromagnetic field. The magnetic
PDF
Album
Full Research Paper
Published 29 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • , fluid density and viscosity. However, Γi is unbounded, i.e., it does not include squeeze film damping effects [26]. Hence, it underestimates the stiffness, which results in a too large estimate for the amplitude. Finite element analysis that takes into consideration squeeze film damping, as well as the
PDF
Album
Full Research Paper
Published 08 May 2018

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • performance. In order to characterize the diode-like behavior under forward and reverse currents, we conducted three-dimensional finite element analysis (FEA) and charge tunneling calculations for the tip and bottom electrode system, as shown in Figure 5. The electric field distribution in AFM measurements
  • . Black contour lines highlight the correlation between potential and electron current in (b) and (c ) and the defect boundaries in panels (e)–(h). The scale bars are 500 nm. Finite element analysis and Wentzel–Kramers–Brillouin quantum tunneling calculations of the tip–electrode system and resulting
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • fundamental reasons for multifrequency AFM which is based on the assumption that additional information is encoded in these higher modes. To enable the optimization of the piezoelectric response to higher order modes, plate theory with finite element analysis is used to determine the spatial distribution and
PDF
Album
Full Research Paper
Published 06 Feb 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • . Simulation The Pt heater was simulated in order to optimize the design for uniform heating of the sensor active area and minimizing the power consumption. The COMSOL Multiphysics® finite element analysis (FEA) tool was used for effective modelling/simulation of the heater components for the transducer. The
PDF
Album
Full Research Paper
Published 22 Dec 2016

Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

  • Eyup Cinar,
  • Ferat Sahin and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2015, 6, 2015–2027, doi:10.3762/bjnano.6.205

Graphical Abstract
  • sample. Fused silica force–distance curve. Spring constant vs maximum depth of penetration. Finite element analysis data as compared to experimental data. Images of cube-corner diamond tip used in nanoindentation experiments. (a) A 3D representation of AFM scan for the cube-corner diamond tip used in
PDF
Album
Full Research Paper
Published 12 Oct 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • functionalities. The optical properties of these structures have been studied through finite element analysis simulations that demonstrated the presence of broadband absorption and multiband enhancement due to the unusual geometry of the antennas. The enhancement was confirmed by SERS measurements, which showed a
PDF
Album
Full Research Paper
Published 18 Feb 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • eigenmode is difficult to calibrate by approach curves due to the motion of the first eigenmode, we estimate the difference in sensitivity from eigenmode calculations using finite element analysis. We find the ratio of the second eigenmode OLS with respect to the first eigenmode OLS to be a factor 5.85 and
PDF
Album
Full Research Paper
Published 22 Dec 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • is subsequently capped by a titania layer, resulting in enhanced scratch/wear resistance. The physical basis of this effect is explored by means of Finite Element Analysis, and we suggest a model for friction reduction based on the "cushioning effect” of a soft intermediate layer. Keywords: finite
  • modifying their bulk properties. Finite element analysis (FEA) provides insights into the mechanism of friction reduction. Finally, we show the value of AFM-based methods for measuring nanoscale mechanical properties of thin hard films – a system that is otherwise difficult to characterize [37]. Results and
  • a gold reflective coating was used for the LFM mode. Nanoscope analysis software was used for analyses of the data. Finite Element Analysis (FEA). The FEA model chosen to model the experiment used a stiff upper layer of varying thickness, representing TiO2, glued to a substrate, representing the
PDF
Album
Full Research Paper
Published 10 Jul 2014
Other Beilstein-Institut Open Science Activities